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MULTI-GRANULATION INTERVAL-VALUED FUZZY ROUGH
SET MODEL UNDER HESITANT ENVIRONMENT

XKIAOYAN ZHANG®, JIRONG LI, AND MINGLING WU

ABSTRACT. With the swift development of the information era, we have to deal
with a mass of data, accompanied by information missing, information ambigu-
ity and other varieties of problems. As two effective theories to cope with the
uncertainty, both rough set (RS) and fuzzy set (FS) are extensively emploved in
various processes of decision. Newvertheless, when the dimension and scale of a
data set are greatly enormous, the process of inference and decision-making has
become so complex that it has led to hesitation and vacillation of people between
several options. In order to surmount the aforesaid limitations, a novel and in-
novative model referred as multi-granulation interval-valued hesitant fuzzy rough
set (MGRS-IVHFS) is established on the foundation of interval-valued hesitant
fuzzy rough set (IVHFRS). We recommend the fundamental definitions and rel-
evant properties concerning this model under the circumstance of optimism and
pessimism, and calculate the upper and lower approximations in two sifuations
by examples as well as prove the availability and validity of pertinent theorems.

1. INTRODUCTION

As the era of big data is racing ahead, intricate information can come into sight
everywhere in daily life. In the face of such complex big data, it is potential to
generate some situations such as information ambiguity and uncertainty. Designed
to solve these uncertainties, rough set (RS) theory was proposed. Especially in
artificial intelligence, RS has a vast range of utilizations. RS theory, brought up by
Pawlak [9,10] in 1982, is a generalization of classical set. The prime feature of RS
1s that in the light of classification, the unknown concept is depicted by delining
two approximate operators. It links knowledge with classification, and considers
knowledge as the ability of classification. The inaccurate or uncertain knowledge
can be approached through known knowledge. In recent years, this theory has led
to a heated discussion for an increasing number of researchers [3,6,7).

The fuzzy set (F'S) pays attention to fuzziness when dealing with problems pro-
posed by Zadeh |24], which generalizes the classical set theory. After the FS were
proposed, several related extension forms were also introduced. In 1975, Dubois
and Prade [4] offered a proposal about the interval-valued fuzzy set (IVFS), and ex-
tended the membership of F'S to a subinterval of the interval [0, 1]. At the outset of
the 21st century, with a view to sequencing diverse interval values, Xu and Da [17]
offered a solution by providing two equations to estimate the magnitude between
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two interval values, thereafter they structured a matrix whose rows were correspond-
ing to respective interval values for acquiring final verdict. In 1986, Atanassov [1]
generalized the IS, and the thought of intuitionistic fuzzy set (IFS) was proposed
accordingly. It further described the uncertainty by adding non-membership func-
tion. However, with the vigorous advance of the age, issues that people confront
with are becoming complex, at the same time the occurrence of uncertainties is
augmenting in the decision-making process. Therefore, experts often hesitate and
vacillate between several values when evaluation. As a result, Torra [16] brought
forward the viewpoint of hesitant fuzzy set (HFS), so that the membership of an
object can be composed of a set containing multiple possible values. In 2013, Chen
et al. [2] proposed an interval-valued hesitant fuzzy set (IVHFS) based on the HFS.

In addition, granular computing [18,23,25] is also a novel theory, which combines
the research achievement of RS, FS, artificial intelligence and other theories. The
classical and generalized rough set were almost all set up under single-granulation
relation. In granular computing, it is widely shared that an equivalence relation over
a domain is regarded as a granularity, plus a partition is regarded as a granularity
space. When a given domain is induced by multiple equivalence relations, multi-
granulation spaces will be formed. Besides, the resulting RS is known as multi-
granulation rough set (MGRS). The construct of MGRS was brought forward by
Qian et al. [11,12] in 2010. In 2012, Xu et al. [20] explored MGRS in ordered
information systems and proposed two novel models. Subsequently, Xu et al. [21]
came up with another model under the name of multi-granulation fuzzy rough set
(MGFRS). They have accomplished some research on pertinent properties.

In real life, since the equivalence relation of Pawlak RS is extremely strict, a
part of problems cannot be explained by RS model. Consequently, it is crucial
to generalize and extend it. For the purpose of overcoming these limitations of
classical RS, the research of combining RS and FS [8,19] has become a emerging
topic. In 1990, Dubois and Prade [5] presented a coneept of fuzzy rough set (FRS),
which made the RS reach a momentous development in the fuzzy theory. According
to the fusion of HFS and RS, Yang et al. [22] developed axiomatic approaches
in connection with hesitant fuzzy rough set (HFRS). In 2014, Zhang et al. [27]
combined the IVHFS and RS based on the HFS, and made a point about the
interval-valued hesitant fuzzy rough set (IVHFRS), which represented all possible
membership degrees of an object by multiple interval values. Based on the model
of the IVHFRS over two domains, Zhang et al. [26] proposed a way to diagnose
steam turbine fault.

In the information age, we are often at a loss when it comes to reasoning and mak-
ing decisions. As one of plentiful approaches of knowledge discovery, the strength
of RS i1s not concerned about those additional information and preparation. By
virtue of unexpected obstacles and interferences with issues such as missing and
repetition during data collection in daily routine, what makes us tough is to char-
acterize the degree of membership by a real number. Depending on the complexity
of situations, people tend to select no less than one value to delegate their own
standpoints, which guarantees the decision outcome more accurate. morcover, it
is thinking about problems from different points of view that makes us find the
most appropriate decision-making approach. Thereby, we commence studying the
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multi-granulation interval-valued hesitant fuzzy rough set (MGRS-IVHFS), that is
more objective than other conventional methods. Recently, RS in association with
other models is applied by some scholars in terms of prediction [15], multi-criteria
decision making [13] and distance measurement [14].

In this paper, according to the properties of IVHFRS, multi-granulation interval-
valued fuzzy rough set model under hesitant environment is put forward, and the
model in optimistic and pessimistic cases are studied. Moreover, relevant theorems
and proofs are given. The arrangement of remanent paper is as following statements.
In the first place, the IVHF'S is briefly reviewed in part 2. Additionally, the basic
foundation of MGRS is proposed. In part 3, the prime notion of the MGRS-IVHFS
is taken on. Afterwards, correlative properties of the model and its proof are given.
Then the approximations of this model are caleulated with instances to certify the
validity of theorems. In part 4, we draw a conclusion about this paper and point
out the orientation of prospective work.

2. PRELIMINARIES

About this section, some foundational knowledge and properties with reference
to the IVHFS will be retrospected firstly. Furthermore, we are going to introduce
the primary definitions of MGRS.

For abiding by the principle of conciseness and explicitness, we make an assump-
tion that U is a finite and non-empty universe of discourse. Moreover, we abbreviate
the lower and upper approximations as the L&U approximations.

2.1. Interval-valued hesitant fuzzy set. Initially, Chen ot al. [2]| presented an
idea about the IVHFS, which was based on the HFS and generated by replacing the
clear values in the F'S with the interval mumnbers. It is a more flexible structure that
reflects the hesitant degrees of experts when evaluating objects or selecting targets.
Prior to introducing the IVHFS, we are about to display the idea of HFS.

Definition 2.1 (Sce [16]). Assume U be a universe with finite elements, then we
express a HFS £ over U as £ = {{w, hg(w))|w € U}, where hg(w) is a set composed
by several disparate and finite elements in [0, 1], indicating all possible membership
degrees of w in U to set £, and the denotation of he¢(w) is hesitant fuzzy element
(HFE).

Definition 2.2 (See [2]). Assume U be a universe with finite elements, then we
express an IVHEFS T over U as I = {{w, hr(w))|w € U}, where hy(w) is a set composed
by several disparate and finite interval numbers in [0, 1], indicating all possible
interval-valued membership degrees of w in U to set I, and the denotation of hy(w)
is interval-valued hesitant fuzzy element (IVHFE). We can express hy(w) consisting
of n interval numbers as hy(w) = {¥;|: = 1,2,...,n}, where the interval number is

L Y] A

L = [u.i . Here v~ 14 " are the lower and upper limits of the interval.

In quick succession, we recommend two particular interval-valued hesitant fuzzy
sets (IVHFSs):

(1) For any w € U, hy(w) = {[0,0]} < I is denoted as an empty IVHFS. That is
to say, the membership degrees of all w in U to set [ is 0.



2234 XX, ZHANG, J R. LI, AND M. L. WU

(2) For any w € U, hy(w) = {[1,1]} < I is denoted as a full IVHFS. That is to
say, the membership degrees of all w in U to set [ is 1.

As can be observed, the number of interval values in diverse IVHFEs is perhaps
diverse. Consequently, the following assumption is made:

Assume hy(w) and hy(w) be two IVHFEs. If the lengths of hy(w) and hy(w)
are inequable, namely [(hy(w)) # [(hy(w)), then with the purpose of operating
between two IVHFEs, the lengths of hy(w) and hy(w) should be equal as well as
both of them are | = max{l(hy(w)),I(hyv(w))}. If I(hy(w)) < l(hy(w)), then we
are required to extend hy(w). In other words, we should add its maximum interval

number to hy(w) until I(hy(w)) = I(hy (w)).

Definition 2.3 (See [27]). Assume the interval-valued hesitant fuzzy relation R be
an IVHF subsct of U x U and U be a universe with finite elements. We denote |t by
R = {{(w, ), hg(w, ¥))|(w,¥) € U x U}, where hp(w, ) : Ux U — d[0,1]. hxlw, )
is a set of interval munbers in d[0, 1], representing all possible membership degrees
between w and 1.

For the sake of convenience, the family of interval-valued hesitant fuzzy relations
over U is denoted by IVHFR(U x U). We will recommend the definitions of upper
and lower approximations of interval-valued hesitant fuzzy rough set (IVHFRS) in
what follows.

Definition 2.4 (Sce [27]). Assume R be a relation over a universe of discourse U
and R € IVHFR(U x U), then (J, R) is referred as an approximation space of IVHF.
Given any G € IVHF'S, then we define the L&U approximations of (G with respect
to (U, R) as R(G) and R(@), denoted by

R(G) = {{w, hpe) (W) w € U}, R(G) = {{w, hygyey (w))|w € T},

where hy(cy(w) = Ayev{hre(w, ¥) V hg()}, hﬁ((;‘)(w) = Vyeu{hn(w, ) A hg(y)}.
“A" signifies “select smaller” and “V7" signifies “select larger”. (R(G), R(G)) is
referred as the IVHFRS of @ to (U, it).

2.2. Multi-granulation rough set. It is well acknowledged that when a given
domain 1s induced by multiple relations, divisions can be regarded as multiple gran-
ularities, which determine the corresponding multi-granulation rough set (MGRS).

Definition 2.5 (See [12]). Assume triple tuple Z = (U, AT, F') be an integrated
information system, Ay, Aq,..., As € AT, R;(i = 1,2,...,s) is the corresponding
relation of the attributes in AT. For any K C U, the optimistic multi-granulation
L&U approximations of  based on the relation ®; are described as apr®, (k)

and apr’, (K, denoted by
o

=1

0 — Lol 7 £l YT = fwl A (Jwla N
%, ()= 1 9, € 10), 7%, ()= (o] A(lla, 1 £ 0)

where “V" signifies “or” and “A” signifies “and”.
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Additionally, if apr®. (K) = apr?.  (K), then K is referred to be an opti-
3 A 3 A
i ) i=1 i=1

mistic multi-granulation definable set with respect to multi-granulation structures
Ay, Asg, .., As. Otherwise, K is an optimistic multi-granulation rough set in an
information system.

Analogously, for any K C U, the pessimistic multi-granulation L&U approxima-
tions of K based on the relation R; are described as

‘P — L A { ': fp
aprs,  (K) ={wl A(wla € K)} @pre,

i=l i=1

E -
(K) = {ul ¥ (Wla, K #0)),
where “V7 signifies “or™ and “A” signifies “and”.

3. MULTI-GRANULATION INTERVAL-VALUED HESITANT FUZZY ROUGH SET

The previous section is an introduction to some essential notions and relevant
properties of IVHES. As for the next narrative, we will further extend the IVHFS
to multi-granulation spaces.

3.1. The optimistic multi-granulation interval-valued hesitant fuzzy rough
set. For the imminent contents, the MGRS-IVHFS that we put forward has two
forms, including the optimistic and pessimistic multi-granulation interval-valued
hesitant fuzzy rough sets (MGRS-IVHFSs). Here, we will take into account the
former induced by multiple interval-valued hesitant fuzzy relations.

Definition 3.1. Assume R; (i = 1,2, --,5) be s relations over a universe of dis-
course U, and R; € IVHFR(U x U). (U, R;) is termed as an approximation space
of MGRS-IVHFS. Given any G € IVHFS, then we define the optimistic MGRS-
IVHFS L&U approximations of G with respect to (U,%;) as MY (G) and
_{'} & .

f'vfi " (G) as below: =1

i=1

MO (G)={{w, hyo ()(w))lw € U},

> R S
i=1 P
O

;’Ui R (G) = {{w, h'ﬂ{;_ H{Gj{w)} w € U},
i=1 s

s , , s
where }"’MG{ (@) (w) = :'El Apev{hpe (w, ¥) V ha (@)}, hyzo @ (w) —I_.-":"al Vyets

¥R > R
i=1 i=1
{hg, (w, @) hg(¥)}. “A7 signifies “select smaller” and “V” signifies “select larger”.
{M{% (G), M . - ((z)) is termed as the optimistic MGRS-IVHFS of G to (U, ;).
R, R

Additionally, if M (%: (G) = M G; ii? (), then an IVHFS G is optimistic and
"y 2Ry
i=1

=1

definable under multi-granulation relations. Otherwise, (& is optimistic and rough.
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Proposition 3.2. Suppose that (U, R;) s an approzimation space of MGRS-IVHFS.
Given G, K € IVHFS over U, then the optimistic MGRS-IVHES satisfies the fol-

lowing properties:

OL)MC (@) C@, oU,)M%.  (Q)2G,
(OLy) Eﬂh{ ) € (oth) gl%mﬂ ) 2
OL)MC (G°) = un G OULYM%,  (G°) = (MO, (G))S,
( 50 (G%) = ( 5 2, (G (OUz) izlﬁl( )= Eﬁf( )
O - ae —
(OLRJAIZS:%{E’J) =0, (OUs)M & . (9) =0,
i=1
= O
(owwﬂ {u} (OU)M s, (U) =1,
1= 1 LEHI
(OLs) MY, (@nK) =M% (G)nMS__ (K),
)IRL R > R
=1 =1
(OUE,)H;Q o (GUK) =M g, (G)U H": ., (K),
1 -El ' [ -.l ' 1 -:l :
(OLs)G C K = M°% (G)c MY (K),
SO 2 R
!_I. 1._1
r - ,—GL i) ._C';
(OUs)G C K = MZR(GJ C M, (K),
i=1 i=1
(OL;)MP (GUK)2MC (G)uMC (K),
Ew Zh 3R
i=1
-
(UM%, (GNK)C M, (G)nMa, . (K).
1%‘] 521 I%‘i ﬂl I%(]R‘I.

Froof. Without loss of generality, we merely demonstrate the properties of lower
approximation, then it is straightforward to obtain these properties of upper ap-
proximation in an analogous technique.

(OL,) for every w € M C;Z . (G), it can be obtained from Definition 3.1 that

i=1

for every w,v € U, MY9% (@) = {{w, _i Apev{hge(w, ) V ha()})|lw € U} =

i
i=1

(0, V {ves{(has () Vha@)IAL A (s (0, 8)Vha(@DIN} =

{{{l U‘} V h(_;{w)} A { ."I.I". h.g.gv_: [:f.d.l 1,-5:] Vv h-(_;{”!.'f'.-‘ )}}:}} = "rM:, :.\j'fl{ﬂw'_:r_fj{h.{;{w) M {t,.'.:gu
(hge (w, 1) V he (v )}}}}}} So we have hg(w) A { i (hpe(w, ) V ha(¥)) }=halw),

thus ‘u’ {h.;; w) A { ﬂ (hﬂc{w PV hg(¥))}}=he(w). It is clear to figure out

&
{{':"“IJ 131 {‘n“e':-"EU

hyo (W }-ﬁh{_,{ ) thereby M,

(G) C G is proved.
= Ry E R
i=1

=1
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(OL2) M5, (G = {() V Ageu{hre (@, 9) Vhae($)})|w € B} = {(w, V Ages

=1

{(~ hg,(w, ) V (~ b))} |w € U} = {{w,;i}l Apeu{~ (h,(

£

) Aha()) }lw €

U} = {{w,~ {1;'51 Vyev(hy, (w, ¥) A hg(¥))})|lw € B} = (ﬂ’f% m_(c})“a so we get
1=1
o I 'D £
ﬂff & {_: — ?hr {.r .

=1

(OL3) For ewn u..? € U, if G = 0, then hg(y) = {[0,0]}. It can be found that

& f
M% m_( = {{“"11.21 Apev{hre (w, ¥) V{[0,0]}})|w € U} = {<“~i‘:*’1 Ngevhns (w, V)]
i=1

w € U} = {(w, ¥ {hnelw,w) A (A haslw, o) Dlw € B} = {w, ¥ {{{0,00} A

(A hpe(w,¥) }}|wEU}—{{\,u ‘u’{{] 0|} |w € U} = {{w, {[0,0]}}|w € U}, there-

WL

fore MO, B =
> ET%f( )

-]

(OL; For every w € U, if G = U, then he(v) = {[1,1]}. It can be found that

f‘v'f% DS {{w;i’l Agevthns(w,¥) VAL 1] Hlw € U} = {{w, {[1, 1]}}|w € U},

1
therefore MY, (U) = U.
poes

(OLs) For every w € U, it is distinct that J‘Lf”z N (GNK) = {{M,EL Apev{hge(w, ¥)

V heng ()} w € U} = {{w, V Nveulhre(w,¥) V (ha(¥) A hg($))})|w € U} =
{(w:;fl Aypet{(hge(w, ¥) V flg[:'t,-,’:]} A (hge(w, ¥) V hg(¥))})|lw € U} = {(w:ii Nypets
{hpe(w, ) V ha(¥) }} lw € U} A {{w, j”l Apeu{hnpe(w, ¥) V hg(¥)})|w € U}

=hyo, (@)(@) Ao {m{“-’) =M% (G)NMS  (K).

}‘_. ;: Iy ) El R, 'El e
i=1 = i=
(OLt,} Bﬂt‘duaﬁ‘ of G € K, we learn about hg(v)=<hg(¢¥). That is to say,
k)L (k)L kU WU . s
PO () < AP ), RSV () < K (). Thus, hyso (@) =¥, Avev
E

" g F-,L f 5 r f k = L |
(RO (w, p) VR, ¥ Aver{hEVw, $) VR )} < [V, Ayeu{h®E(w, h) Vv

VL,
P ()},
V Ageuth®Y (w,9) V i ()Y = hygo, () (). So we get M3 (@<
R 2
i=1

(K) is proved.

IZ“’J

M°% (K).GCK=MY% (GCM C;
2 2, o



2238 X. Y. ZHANG, J. R. LI, AND M. L. WU

(OL7) By reason of G C G UK and K C GU K, from this property of (OLg),
it satisfies MU (G) C M'G {Cd K)and MY (K)C MY (GUK), we can

>R R pOES > R,
=1 = 1 i=1
obtain MY (GUK) 2 M‘?’, (G) U M, {;c:} O
> R, >R >R,
i=1 =1 i=1

Example 3.3. Table 1, 2 and 3 depict all possible membership degrees between w;
and 7;(¢,7 = 1,2, 3,4), associated with some indicators impacting on the life span of
abalone. Given a domain U = {1, 72, 73, 74}. They are respectively representative
of diameter, height, length and weight. R; € IVHFR(U x U)(i = 1,2, 3) are three
relations over U on behalf of proposals from three specialists. Assume G € IVHFES
be a sample of abalone that we have fetched as follows:

{{m1, {0, 0.3]}), (72, {[0.2,0.5],[0.3, 0.6]}), (73, {[0.6, 0.8]}), {4, {[0.1,0.3], [0.4, 0.9]})}.

Table 1. An interval-valued hesitant fuzey relation under 3y

R 1 T2 T3 T4
T1 [l.. l] [U, '[}l] 0.2,0. d] [ 14, ( 5] '[].l, {}.2:, [(}.3, {]'.5]
To [U., U] [l, l] [U L. ﬁ] [U 2,0 T_ [{J.S, f_].g]
Tq :U.EJ 0.3:, [U‘.f’l,ﬁ.ﬁ] [[}.5, 0. ﬁ], [ 0. 7] ] '[]-3: {].ﬁ:, [U‘.-’lf U.T]
1 [0.1,0.2],[0.3,0.5] [ﬁ.s,n.gj 0.3, 0. u] [0.4,0.7] 1,1]

Table 2. An interval-valued hesitant fuzzy relation under Ro
%2 T1 T2 T3 T4
m 1,1] [0.6,0.7], [0.6,0.8] [0.5,0.7],[0.6,0.9] 0.6,0.7]
75 |[0.6,0.7],[0.6,0.8] 1,1] 0.2, 0.4] 0, 0]
T3 :{}.5, {].?:1 [U.ﬁ, []'.‘.:]] ['[].2, {}.4: L l] '[].3_, {}.5:, [[}.ﬁ, {}.3]
Ty [[,].ﬁ-.. U.T] [[}, ﬂ] [[] . 5] [U 6, 0. 8 [1, l]

Table 3. An interval-valued hesitant fuzzy relation under R;
Teq m T T3 TA
5 11, 1] 0.6, 0.8], [0.8,0.9] 10.2,0.3] 0.5,0.6,[0.7,0.9|
T [10.6,0.8],[0.8,0.9] |1, 1] 10.2,0.3],[0.2,0.5] [0.1,0.3],]0.2, 0.6
T4 [0.2,0.3] [0.2,0.3], [0.2,0.5] 1, 1] [0, 0]
T4 :{}.5, U.[‘i:, [ﬂ'.?, ﬂ'.ﬂ] [U'.l, ﬂ.3], [{].2.. ['J,ﬁ] :U_. f]'] [l.. l]

According to the descriptions of Table 1, 2 and 3, we can calculate that

h”ﬂoa (G}(TI} = {|0,0.3]}, hM{ﬂ (@) (2) = {[0.2,0.4],[0.3,0.6]},

P z ®
hyo (y(s) = {[0.6,0.8],[0.5,0.8]}, hyo (1) = {[0.1,0.3],[0.3,0.6]}.
L R, L _.g: R, /

And, we can get a conclusion that the optimistic MGRS-IVHFS lower approxi-
mation of G is ﬂ% (G) = {{m1,{[0,0.3]}), (2, {[0.2,0.4], [0.3,0.6] }}, {73,
R

My

{0.6,0.8], [0.5, 0.8]}), (s, {[0.1,0.3],[0.3, 0.6]})|7 € U}.



MGRS-IVHFS 2238

Analogously, we can also compute that

f:'.ﬂc:; ( ](Tl) = {(0.2,0.3],0.4,0.5]}, h— 7°. r,j{’f‘g] = {[0.2,0.5], 0.3, 0.6]},
IEL Ry g:1 "

th:JS [{3‘]{7—3) = {[0.6,0.8]}, hMﬂg (G}(Td} = {[0.1,0.3],[0.4,0.9]}.
¥'| :ﬁl i§1 ﬁ1

So, it is not difficult Lu obtain that the optimistic MGRS-IVHFS upper
approximation of G is M 0 (G} = {{n,{[0.2,0.3],[0.4,0.5]}}, (12, {[0.2, 0.5],

1= 1

0.3,0.6]}), (73, {[0.6, 0.8]}), (74,[0.1,0.3],[0.4,0.9]}) |7 € U}.

3.2. The pessimistic multi-granulation interval-valued hesitant fuzzy
rough set. In a similar way, next we will consider another model, which 1s the
pessimistic MGRS-IVHFS.

Definition 3.4. Assume R; (i = 1,2,...,5s) be s relations over a universe of dis-

course U, and R; € IVHFR(U x U). (U, R;) is termed as an approximation space

of MGRS-IVHFS. Given any G € ITVHF'S, then we define the pessimistic MGRS-

IVHFS L&U approximations of G with respect to (U,R;) as M*, (G) and
2 R

Mri 0 () as below: =1

i
i=1

e . _ Wl M
M (G) = {{w, I;M;;q m.{,._-;,{u))lm €u}, M. (G)
i=]1 1

i=1 B
- {{::,.;_rJ hﬂp“ {GJ{MJHM € U}:

2w

i=1
where hyr (g (W) = n Npev{hms (w,¥) V ha(¥)}, hor w(u} = V Vyeu{

- E ; ! i=l
hag. (w, ¥) Ahe (t,)}} “AT signifies “select smaller” and *v” qwlnﬁm ‘select larger”.
(M f; - (G), M Z P (G)) is termed as the pessimistic MGRS-IVHFS of G to (U, R;).
>R 2 T

Additionally, if M ‘E: (G) = EE - (), then an IVHFS @ is pessimistic and
", et

i=1 =1

definable under multi-granulation relations. Otherwise, GG is pessimistic and rough.
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Proposition 3.5. Suppose that (U, R;) s an approzimation space of MGRS-IVHFS.
Given G, K € IVHFS over U, then the pessimistic MGRS-IVHES satisfies the fol-
lowing properties:

(PLMY, (G)CG, (PUNM ., (@) 26,
P2 =
PLOME, (G = (M~ (Q)), PUM . (G9) = (MF, (@),
(PL)MY, | (@)= (TG, , (@) (PUDM 3. 5 (6) = (L3, (@)
i=1 1=1 i i=1
(PLs)ME. () =9, (PUM ., (1) =
421 ' 1_]
PLOME, (U)=U. PUNM: (U)=0U,
(PLOMT, (V) (PUDMY, , )
i=1 =1
PLYMYE. (GnK)Y=M% (G)nME  (K),
( ]_}Zﬂh{ A Ty zﬂ:,-( ) _:»:at,{ )
o _—Pg - —f‘;
(PUs Wi (GUK) =M (G)UMy,  (K),
=1 i=1 =1
(PLe)GC K =M., (G)Cc M., (K),
Z?Rl Z:’Ri
i=1 i=1
I P
2T (@ 4 M o= T i LY
(PU)G S K = M, | (G) €M (K),
i=1 =1
(PL7 )M, (GUK)2 M, (G)UuM', (K),
EE}I%{ ZEI’E.- 3R
— —P —P
PUNM: (GNK)C M- (G)NnM-. (K).
(PUIHL o (GNK) S M @) NI, (K

Example 3.6 (Continue on Example 3.3). Calculating the pessimistic MGRS-
IVHFS L&U approximations of GG as following steps:

hyr () ={[0,0.3]}, hyr  (g(72) = {[0.1,0.3]},

2 R

h‘M“; G}(TJ} = {[0.3,0.5],[0.1,0.4]}, hw—.: LGJ (r4) = {[0.1,0.3],[0.1,0.3]}.
PORy },
i=1

It can be computed that the pessimistic MGRS-IVHFS lower approximation of
G is
M; N (G) = {(71,{[0,0.3]}}, {72, {[0.1,0.3]}}), (73, {[0.3,0.5], [0.1, 0.4]}}, {74
(/0.1,0.3})|7 € T},

In the same manner, we are able to gain that

e, (1) = {[0.5,0.7,[0.6,0.90}, hyr o (m2) = {[0.5,0.6],(05,09]},
iglﬁ- 1%:1 '
hep © (13) = {[0.6,0.8]}, hyzr o (7a) = {[0.3,0.6], [0.6,0.9]}.

PR Ry

i=1 i=1
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As a consequence, the pessimistic MGRS-IVHFS upper approximation of (7 is

ﬁ"; . (6) = {(71,{(0.5,0.7],[0.6,0.91}), (72, {[0-5,0.6], [0.5,0.91}), (s, {[0.6, 0.8]}),

(14.[0.3,0.6], [0.6,0.9]})|+ € TY.

3.3. The relationship between single-granulation and multi-granulation
interval-valued hesitant fuzzy rough set. With reference to preceding sections,
we have brought forward some requisite concepts and relevent properties of the
optimistic and pessimistic MGRS-IVHFS. Afterwards, we will study the relationship
between IVHFRS, optimistic and pessimistic MGRS-IVHFS.

Proposition 3.7. Suppose that R; € IVHFR(U xU) (i = 1,2,...,s) are s relations
over the domain U§. Given any G € IVHFS, then

oNMC.  (G) | |Ri(G), 7o (@) 2| |R(o).
O )< UR(©) 50 )2 U@
5 (_] . 5 -
(02)M%(G) = Ri(G), Mg o (G)= (1 R:(G).
fg:l T =1 = i=1
O)M7 (G K) =] @®(G) nR(K)), M., (GUE)= ) (R:(G) UR(K)).
i=1 ' i=1 i=1 ' =1

Proof. On account of the quantity of granulations is generally finite, the proof is
only given under the circumstance of two relations for the convenience of description,
that is s = 2. Suppose that interval-valued hesitant fuzzy relations are R; and R;,
respectively. Analogously, we certify merely the properties of lower approximation
here.
(O1) For every w € M% (G), it can be found from the Definition 3.1 that
2

hyo, (W) = V Apeolhre(w, ¥) V ha(¥)} = {Apeu(hrs(w, ¥) V ha(¥))} V

= &
2Ry
'I:=J.

{Awev(hng (w, ¥)Vhe())}. At the same time, for every w € U Ri(G), hf,l . ij{wj
1=1 il
i=1

= .f""'-q;,.(_”{h |,:| ;(::;.?1 1-3'.’)Vf?.-(;{'y'il}} = "'I""'t.ilf_U{h?H_*;LJ?HE ({.:J, ’i!l.'f'.’;l"-.ffh(;{'“ll.",l}} = f'l“'l.t‘b;_l]{jl?]'-t;' (LI.J, 'i!l.'f'.']l"«.-'r
i=1 )

hie (w, ¥)Vha ()} Since hupe (w, ) Vhge (w, ¥)=hype (w, 1) and hge (w, 1) Vhge (w, ¥)
ih'lﬁi {LJ.J, T,J‘}., it 1s clear that {ﬂﬂ'_.g_j UL{R; {LJ.J, T,J‘}VJFLQ(LJJ}}V{ﬂ,‘;._u(hj?i(w !.y) Uf!g{w})}
< ﬂ#.;.:[j{h;ﬂ; (w, ¥) V hge (w,9) V ke ()}, namely hM‘f;':: mi{m{w)iho EHE;{GJ{M)' So

i=1 i=1

YR =]

i=1

we have M©, (G) C | Ri(G).
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(O3) For every w € MY (G),we can obtain from the Definition 3.1 that
2R
i=1

hyso (G‘j(w} — ‘:fl Npetu{hpe (w, ¥) V hg(y)} = ‘ff’l ha, () (w). Therefore,
=& 9. 1= l 1 1=
:LJ, :R?
_ﬁ'

M° (G)= U R(G).

Eiﬂ‘; i 1_:

(O3) It is toilless for us to prove these propositions directly by applying the result
of Proposition 3.5 and (Os). O

Proposition 3.8. Suppose that R; € IVHFR(UxU) (i =1,2,...,s) are s relations
over the domain UB. Given any G € IVHFS, then

(P)MF, (G) € |JRi(G), M . (@) 2 | J®R(G)
paes i=1 = i=1
& 5
i g i 77 . m o
(P)MY, (G) =[Ru(G), M. o (6)={J%(6).
i>JJ.EFEi =1 i=1 ' i=1
5 P 5 )
[R@jME ETE_(Gm K) =) (®:(G) N Ri(K)), Mg (GUK) = (Ri(G) UR(K)).
PR i=1 = i=1

Proof. We can prove above properties readily by adopting similar approaches of
Proposition 3.7. []

Proposition 3.9. Suppose that R; € IVHFR(U x U) (i = 1,2,...,s) are s relations
over the domain U. Given any G € IVHF'S, then

MOME (@) c M° (@) c| R (), IR(C) C TS (@) C TN (O).
(M) Em‘_(ll_ EH‘_{ }_H (G) H (G) C .zl%(}_ Z:lfm{}
i=1 =1 = i=
MME () CR(G)C MO (G), M= (G)CR(G)CM= (G)

( ‘Ej_m’ei( ) € Ri(G) C zaﬁf{ ), EI'TR"( ) € Ri(G) C E%( )

Proof. (M7) Applying the result of Definition 3.1 and 3.4, Proposition 3.7 and 3.8,
1t 1s easy to prove.

(Mz) Similarly, we can prove without effort from Proposition 3.7, 3.8 and (M;).

0

Example 3.10 (Continue on Example 3.3, 3.6). As is displayed below, we work
out |J Ri(G) and | R,(G):
i—1 =1

1

1

hj (n) = {[0,0.3]}, hg iy (™) = {02,0.5],0.3,06]},

B () = {06,080 he () ={[0.1,0.3],(04,07]}.

1=1 i=1
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It follows that U R:(G) = {(r1, {(0,03]}), (r2,{(0.2,0.3], 0.3, 0.6]}), {73,

=1
In the same way, we can figure out U Ri(G) = {{m1, {[0.2,0.3],[0.3,0.5]}), (72,

1=1
{[0.2,0.5],[0.3,0.6]}), {73, {[0.6,0.8]}), (74, [0.1,0.3], [0.4,0.9]}}| € U}.
Eventually, it is obvious that

] 5
ME (@) cMC (@) c||r@cacl| |r(G) cM% (G) I (G)
@, @UR@ cocUR@ T, (@ SHL, ()
i=1 ja=] =1 t=

4. CONCLUSIONS

RS and F'S are significant tools to dispose of the uncertainty. Plenty of relevant
models can be acquired by extending the two theories. It is essential to select
suitable models to deal with a variety of problems. In the light of the IVFS, we have
come up with the MGRS-IVHFS theory, and studied the concepts and theorems
of MGRS-IVHFS in the context of optimism and pessimism. What is more, we
have demonstrated the validity of these theorems through several examples. By
establishing a creative model that is involved in foregoing contents, we have extended
the theory of IVHFRS from single granularity to multiple granularity, which is
convenient for us to evaluate the decision-making process from multiple perspectives.
Through several examples, we closely unify our model with realistic issues, but
prospective research will not be confined to this sort of problem. As a matter of
fact, this approach is beneficial to fit the era of big data nowadays. Whereas, what is
noteworthy is that we cannot lose sight of these shortcomings concerning this model.
For one thing, we have not set forth concrete criteria to sequence membership
degrees between various objects. For another, when certain object transforms owing
to an insertion or a deletion, its approximations need to be recalculated, which
invests abundant time and vigor.

In the further research, we will extend this model to the information system.
Aimed at attribute reduction, we intend to combine the model with machine learn-
ing method. Simultaneously, in allusion to the restrictions of our model, we are
calculated to update approximations with dynamic data sets in the system.
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